
Emacs as my Canvas

Vasilij Schneidermann

August 2015



Outline

1 Introduction

2 Basics

3 Demonstrations

4 Insights From Retris

5 Wrapping up



Section 1

Introduction



Who?

Vasilij Schneidermann, 23
Information systems student
Working at bevuta IT, Cologne
v.schneidermann@gmail.com

https://github.com/wasamasa

http://emacshorrors.com/

http://emacsninja.com/

https://github.com/wasamasa
http://emacshorrors.com/
http://emacsninja.com/


What?

Emacs is an extensible, QWAN platform for all things text
Very fun to hack on
Yet very little graphical demos
Let’s change that!

http://steve-yegge.blogspot.de/2007/01/pinocchio-problem.html


Why?

Figure: The Mad Scientist

http://lastmechanicalmonster.blogspot.com/2014/08/
page-91.html

http://lastmechanicalmonster.blogspot.com/2014/08/page-91.html
http://lastmechanicalmonster.blogspot.com/2014/08/page-91.html


Section 2

Basics



Emacs

A text editor from 1985
Ported to all kinds of common and lesser common platforms
Mostly implemented in Emacs Lisp
Extensible at runtime
Many interesting features



Buffers

Basic data structure
Basically two strings and a gap
Can represent both files and text in memory
Used heavily for text processing



Text Properties

Supported for both strings and buffers
Property-value pairs attached to ranges of characters
Some of the properties are special, like face or read-only
The display property allows abusing the display engine!
See (elisp) Special Properties and (elisp) Display
Property



Display Engine

Emacs assumes that text is set on a two-dimensional grid
The display property allows for exceptions. . .
What we’re after is the image descriptor
Works for both files from disk and string data!
Code to display an image in the current buffer:

(insert
(propertize " " ’display

’(image :type jpg :file "keyboardcat.jpg")))



Supported Image Types

JPEG, PNG Very common, mostly used with files from disk
GIF Animation!

XBM Monochrome bitmaps, easily generated
XPM, PBM Textual format, easily generated

SVG XML format for vector graphics
PostScript, TIFF No idea why you’d use that
ImageMagick Support for nearly any format plus tunables



Locations

Images can be used in:
Buffer
Mode line
Header line
Echo area
Tooltips (non-native)



Mouse Events and Tooltips

Mouse generates movement, click and scroll events
Movement can be tracked via track-mouse (CPU-intensive)
Trigger tooltips with help-echo and cursor changes with
cursor property
Tooltips can be text and even images!
It’s possible to write mouse handlers by using the :map
property in the image descriptor
Alternatively bind a command on the mouse event and
examine positions



Timers

Emacs is a single-threaded application, but can pretend it’s not
Timers belong to this category and can be run when Emacs
isn’t busy
Idle timers are run after a specified time of inactivity has
passed
Regular timers can be scheduled and are either of the one-shot
or repeat type
If you use too many timers with small intervals in your Emacs
session, fun side effects like cursor flicker can happen. . .



Section 3

Demonstrations



nyan-mode

http://github.com/TeMPORaL/nyan-mode

http://github.com/TeMPORaL/nyan-mode


svg-mode-line

Previous demonstration was about a segment of the mode line
Some Crazy Russian™ did replace the whole mode line
http://github.com/sabof/svg-mode-line-themes

http://github.com/ocodo/ocodo-svg-modelines

http://github.com/sabof/svg-mode-line-themes
http://github.com/ocodo/ocodo-svg-modelines


BGEX

(bgexi-create (bgexid-create
nil ’bgex-identifier-type-default)

t nil "white"
(expand-file-name "~/rms.png"))

Some Crazy Japanese™ ported XEmacs’ background pixmap
support
Requires a patched Emacs
Supports files from disk and strings
Animation doesn’t work well, only tiling is supported
https://github.com/wachikun/emacs_bgex

https://github.com/wachikun/emacs_bgex


svg-2048

Remember 2048?
Web Designers did mods of the original things
Emacsers did ASCII versions of the game
I went after a graphical version
Turns out it’s as simple as generating SVG, deleting the game
buffer contents and inserting the image on each command
Purely event-driven
No animations yet
https://github.com/wasamasa/svg-2048

https://github.com/wasamasa/svg-2048


xbm-life

XBM is an always built-in monochrome image type
This was a test to find out how suitable it is
Bool vectors are funky, but other than that. . .
Timers are sort of weird, but useful
Learned about the UI aspect of a game/simulation
https://github.com/wasamasa/xbm-life

https://github.com/wasamasa/xbm-life


retris

I really love the NES Tetris
As I’ve already experimented with SVG and XBM for
generating images, XPM was the next candidate
While this is a simple game, it involves more than the other
two and needs to run at a constant 60 FPS
Is that kind of thing doable in Emacs Lisp?
https://github.com/wasamasa/retris

https://github.com/wasamasa/retris


Section 4

Insights From Retris



Retro Games Are Great To Steal Learn From

Creative use of resources
Interesting implementation techniques
No game engines, every game is custom-tailored
I’m cloning a retro game after all. . .
Notable exception:
https://gist.github.com/dto/4112806

https://gist.github.com/dto/4112806


Impedance Mismatches

Don’t use game buffer changing functions outside buffer
Buffer and window point can be different
Displaying windows is icky
Deleting and inserting doesn’t play well with scrolling, region,
clicks, etc.
A game loop inside an event loop feels wrong
Timers were not made for this purpose (but can be made to
work well enough)



Data Structures

“They Called It LISP for a Reason: List Processing”
Support for other compound data structures than lists is very
basic
Contrast with CL (polymorphic functions that work on more
than just lists) or Clojure (seqs as general abstraction,
first-class support for vectors, hash tables, sets, etc.)
This includes vectors, hash tables and strings(!)
Sets aren’t a thing, structs are an ugly hack from cl-lib.el

Lists are abused for emulating other data structures, including
sets and hash tables or used instead of vectors

http://gigamonkeys.com/book/they-called-it-lisp-for-a-reason-list-processing.html


Writing Vector Functions

The most natural way of representing tiles, grids, etc. is a
vector
Coercing vectors into lists and back is a no-no
Let’s write our own functions and macros!
I consider releasing these (and many more) as v.el



Writing Vector Functions

(defalias ’v-copy ’copy-sequence)

(defun v-deep-copy (vector)
(copy-tree vector t))

(defun v-grid (width height init)
(let (grid)

(dotimes (_ height)
(push (make-vector width init) grid))

(vconcat grid)))



Writing Vector Functions

(defmacro v-do (spec &rest body)
(declare (indent 1))
(let ((s (make-symbol "s"))

(i (make-symbol "i")))
‘(let ((,s (length ,(cadr spec)))

(,i 0)
,(car spec))

(while (< ,i ,s)
(setq ,(car spec) (aref ,(cadr spec) ,i))
,@body
(setq ,i (1+ ,i))))))



Mutating Strings

/* XPM */
static char *graphic[] = {
/* width height colors chars_per_pixel */
"4 4 2 1",
/* colors */
"o s #ffffff",
"x s #000000",
/* pixels */
"ooxx",
"ooxx",
"xxoo",
"xxoo"}

Instead of mutating a buffer and repeatedly creating a string of its
contents. . .



Mutating Strings

/* XPM */
static char *graphic[] = {
/* width height colors chars_per_pixel */
"4 4 2 1",
/* colors */
"o s #ffffff",
"x s #000000",
/* pixels */
"xxoo",
"xxoo",
"ooxx",
"ooxx"}

. . . I went for treating a string as a mutable array, simply to
conserve RAM.



Reimplementing React

Wrote primitives to modify XPM image
Redrawing the whole grid is too slow for 60FPS
A clever hack was necessary!
React does this with a virtual DOM on animation timeouts
If a dirty flag is set, compare snapshots of the grid, then
redraw the differences
Ugly, but works surprisingly well



Reimplementing React

(let (coords)
(dotimes (y board-height)

(dotimes (x board-width)
(let ((old-piece-char (aref (aref old-board y) x))

(new-piece-char (aref (aref board y) x)))
(when (/= old-piece-char new-piece-char)

(push (list x y (tile-char-lookup
new-piece-char))

coords)))))
coords)



Reimplementing React

(when dirty-p
(dolist (item (diff-boards))

(-let [(x y tile-char) item]
(render-tile x y tile-char)))

(setq old-board (copy-tree board t)
dirty-p nil)

(with-current-buffer "*retris*"
(let ((inhibit-read-only t))

(erase-buffer)
(insert
(propertize

" " ’display
(create-image (concat board-header board-body)

’xpm t :color-symbols palette))
"\n"))))



Scheduling Events

Trying to outsmart the built-in timer support. . .
Many concurrent timers with small intervals make Emacs
flicker
List of vectors representing events
Internal clock advancing every frame
Any event with clock modulo interval equal remainder is
collected
Run accumulated functions later
Oneshot events: Remove them from the list after running
No flicker!



Scheduling Events

(let (tasks)
(dolist (event events)

(when (= (mod time (aref event 0)) (aref event 1))
(push (aref event 2) tasks)))

tasks)



Scheduling Events

(dolist (task (scheduled-tasks))
(funcall task))

(redraw-board)
(setq time (1+ time))



Section 5

Wrapping up



Was It Worth It?

Definitely!
Working around the deficiencies of Emacs was sort of
bothersome
Developing interactive demos in Emacs is fun
I did learn a lot from this (like, why nobody wrote platformers,
shooters or anything else than puzzle games)
Join me!



Other Stuff To Work On

GIF authoring
Bitmap editor
Vector editor
Pixelart (CSS export?)
Demos (scene.org)
Image preview tooltips (IRC clients)
. . .

https://www.scene.org/


Other Cool Demos

http://elpa.gnu.org/packages/svg-clock.html

https://github.com/fitzsim/slime-volleyball

https://github.com/sabof/magic-buffer

https://github.com/sabof/svg-thing

https://github.com/alezost/ducpel

http://elpa.gnu.org/packages/svg-clock.html
https://github.com/fitzsim/slime-volleyball
https://github.com/sabof/magic-buffer
https://github.com/sabof/svg-thing
https://github.com/alezost/ducpel


Questions?


	Introduction
	Basics
	Demonstrations
	Insights From Retris
	Wrapping up

