Playing the piano with Kawa

Vasilij Schneidermann

October 2017

Outline

Intro

Prerequisites

Tour through waka

Outro

Section 1

m Vasilij Schneidermann, 25

m Software developer at bevuta IT, Cologne
m Still contracting at $BIGCORP
v.schneidermann@gmail.com
https://github.com/wasamasa

http://emacshorrors.com/

http://emacsninja.com/

https://github.com/wasamasa
http://emacshorrors.com/
http://emacsninja.com/

Why am | doing this?

| never received proper musical education

| still want to cover songs and maybe compose tunes

MIDI keyboards are bulky

DAWSs and GUI composition software is distracting

Idea: Making my own thing with a text editor style workflow
Reusing MIDI and OSC standards for control

Inspiration for this project

m https://blog.djy.io/
alda-a-manifesto-and-gentle-introduction/

m Pretty much what | looked for

m But: I'm not much of a fan of Clojure for this

m Overly complicated (networked, too much code, many
dependencies)

m Lacks a feature | want (free play)

m Doesn’t work properly for me (networking needs to be
manually set up)

m How hard can it be to do this in a JVM Scheme?

https://blog.djy.io/alda-a-manifesto-and-gentle-introduction/
https://blog.djy.io/alda-a-manifesto-and-gentle-introduction/

Been around since 1998, supporting R5RS, R6RS, R7RS with
plenty SRFIs and own extensions

Fast startup, compilation, decent speed
Good interop syntax, emitting (anonymous) classes is simple
High-quality, only found documentation bugs so far

Biggest downside: Little own tooling (you're supposed to use
ant for building JARs...)

Meet waka!

m Sorry about the name

m Requires JLine3 (terminal interaction) and
javax.sound.midi (generate and play MIDI)

m Live demo time (let's hope this doesn’'t go wrong...)

Section 2

The universal standard for transmitting music events
MIDI controllers (keyboards)

[
[
m MIDI sequencers
[
[
[

MIDI synthesizers
Standard MIDI files
MIDI cables

m Soundbanks, Soundfont format

MIDI limitations

16 channels (each dedicated to a device/synth)
Channel 9 is for percussion
Tracks for logical grouping

Files can have a single track, multiple tracks or multiple
arrangements

128 instruments in 16 groups (GM standard)

Special events for channel volume, pitch bending, tempo, ..

javax.sound.midi

m Java SE has javax.sound.sampled (low-level audio
playback) and javax.sound.midi (complete MIDI
implementation)

m Supports:

Parsing MIDI

Loading soundbanks

Generating sequences

Playing them on a sequencer

Writing them to disk

Plenty of classes to represent many aspects of MIDI

Bonus: Promises

m Problem: Part of javax.sound.midi is async
m Interpreter quits after playing MIDI because it doesn’t block
until finish

m Solution: Make it block by forcing a promise and resolving it
in the asynchronously called event handler when encountering
MIDI end event

Bonus: Promises code

(let ((done (promise)))
(sequence-thunk)
(Sequencer:addMetaEventListener
sequencer
(lambda (message)
(when (= (MetaMessage:getType message) END-OF-TRACK)
(promise-set-value! done #t)
(quit!))))
(Sequencer:start sequencer)
(force domne))

m Otherwise optional dependency for Kawa

m Free play mode requires reacting immediately to a pressed key
m Accomplished by enabling raw mode (and disabling it on quit)
m Catch exceptions to quit in a controlled manner

m Bonus features: Read line with line editing, persistent history

Section 3

Features

Free play mode (type chars, hear notes)

REPL mode (send a line, hear a line of notes) with history
Parses a subset of Alda's syntax

Basic error handling and messages

Customizable defaults

Batch playback of MIDI/waka files

Conversion of waka files to MIDI files

Implemented in < 1000 SLOC (Alda is almost 7000 SLOC)

Free play mode

Cheapo MIDI keyboard replacement

Converts keyboard letter to MIDI note and creates a NoteOn
event

Prints the corresponding syntax for copying output into a
waka file

Lookup can be done in a custom map
Octave switching with < and >
Toggle to REPL mode with C-SPC

Workflow: Try out suitable notes, switch to REPL mode after
figuring out the right notes for a line

REPL mode

m Parses a terse syntax adapted from Alda into AST for a
sequence

m RET synthesizes MIDI sequence from AST and plays it back
m Fancy line editing provided by JLine3

m Workflow: Edit current line and play it back with correct
timing, copy the composed lines into a waka file

Batch mode

Parses a multi-track score into a list of sequences
Converts those to a multi-track MIDI sequence

Either plays it back or writes it to disk

Future improvement: Dump AST for custom export
(Lilypond?)

m Notessscdefgab

m Setting a duration: c1 c2 c4 c¢8 c16 c32 (last duration
persists)

m Dotted notes (increase last duration by 1.5): ¢ d e.

Ties: c1~1
Durations default to }1 and persist until next specified
duration: c4 d e f g2 g

m Accidentals: ¢ ¢+ c- c_

m Chords: c/e/g c/e-/g
m Rests: r4 ri~1 r
n

Bars (considered whitespace): r1 r r r | r2 r | r4
m Octave shift: a > c e r2 e c < a
m Octave change: 00 ¢ 02 ¢c 04 ¢c 06 c 08 ¢
m Sexp: (tempo 120) (tempo)

m Comments: # you won't see me

Seq uences vs Scores

m Sequence consists of whitespace-separated items
mcidef | g2¢g

m Score consists of sequences, each preceded by a name
mmain: o4 cldefgab>c

m backing: o4 cl < bagfed<c

m Simple lexer pass to eliminate comments, split on whitespace,
find tokens and read inline sexps

m State keeping with a string port
m Collect every token/sexp into a list and reverse it

m Create a token port with peek-token / read-token
procedures

Lexing code

(let loop ((tokens '()))
(let ((char (peek-char port)))
(if (eof-object? char)
(reverse tokens)
(cond ((whitespace? char)
(read-whitespace port) (loop tokens))
((eqv? char #‘#)
(read-line port) (loop tokens))
((eqv? char #\(O)
(loop (cons (read port) tokens)))
(else
(Loop (cons (read-token port) tokens)))))))

Lexing code

(define (whitespace? char)
(or (char-whitespace? char) (eqv? char #!I)))
(define (read-whitespace port)
(let loop O
(when (whitespace? (peek-char port))
(read-char port))))
(define (read-token port)
(let loop ((chars '()))
(let ((char (peek-char port)))
(if (and (not (eof-object? char))
(not (whitespace? char))
(not (memv char '(#!; #\0)))
(loop (cons (read-char port) chars))
(list->string (reverse chars))))))

Parsing

m Hand-written recursive descent parser

m Every grammar rule corresponds to a procedure receiving a
token port or string port and returns part of the AST

m Makes up most of the code (> 200 SLOC)
m Errors halt parsing and bubble up to REPL / shell

Parsing code

(define (read-note port)
(let ((key (read-key port)))
(if key
(let loop ((modifiers '()))
(let ((modifier (read-modifier port)))
(if modifier
(loop (cons modifier modifiers))
“(note (key . ,key)
,0(reverse modifiers)))))
#£)))
(define (read-key port)
(if (memv (peek-char port)
"(#\a #\b #\c #\d #\e #\f #\g))
(read-char port)
#1))

Error handling

m Error handling code interwoven with parsing
m Extract current column from string port, point at erroneous
char in token

m Last token held in a parameter

midi> cxxx
Error: Trailing garbage
CXXX

~a~

Error handling code

(guard
(ex
((parse-error-object? ex)
(display "Error: ")
(print (parse-error-message ex))
(let* ((token (parse-error-token ex))
(indent (port-column (parse-error-port ex)))
(width (string-length token)))
(print token)
(display (make-string indent #\space))
(display (make-string (max (- width indent) 1) #!“))
(newline)
(Loop)))
o)

Section 4

Missing features

Auto-completion for sexps in REPL mode

Channel and multiple instruments support, instrument aliases
Percussion support (channel 9)

Key signatures and naturals

Legato / sustain (slurs)

Repetition syntax for notes / subsequences

Arbitrary durations, tuplets (CRAM)

Arpeggiated chords, glissando/portamento, trills

Future Plans

Generate as good sound as Alda, steal other useful features

Transcribe more sheet music

Allow some way to import/export to other formats (MIDI
import / Lilypond export)

Debug sound issues (ideally by adding a debug mode and
writing scripts that dissect generated MIDI)

m Better test suite

Singalong

m Let's play a classic!
m J] Fly Me To The Moon J)

Questions?

	Intro
	Prerequisites
	Tour through waka
	Outro

