
Towards a better Duckyscript toolchain

Vasilij Schneidermann

April 2021



Outline

1 Intro

2 State of Duckyscript toolchains

3 The BASIC rundown

4 Compiling Duckyscript

5 Outro



Section 1

Intro



About

Vasilij Schneidermann, 28
Cyber security consultant at msg systems
mail@vasilij.de
https://depp.brause.cc

https://emacsninja.com/

https://depp.brause.cc
https://emacsninja.com/


Legal disclaimer

The contents of this talk are of purely educational nature
I do not condone usage of any technology presented to hack
other people’s computers unless with their explicit permission
Germany has the so-called "Hackerparagraph" which intends
to punish people who write software enabling a hacking
attempt, but can be interpreted as disincentive to publish
hacking tools
I do not believe this tool to enable attacks that wouldn’t have
been possible previously, as it merely improves the tooling
landscape for those crazy enough to use CHICKEN Scheme,
but still. . .



Previously, at SecCamp 2019

I’ve attended an infosec event
Everyone was handed out a free Digistump Digispark
I visited the corresponding workshop
We learned how to weaponize the microcontroller into a USB
device sending keystrokes to control the computer
It was fun and I bought an extra device, for further
experimentation



Motivation

The workshop was cool, but most time was spent messing
around with toolchains until we got something running
Recurring theme at workshops
I had to use three tools in succession to arm the device with a
new payload:

Official encoder from Duckyscript to binary (Java)
Inofficial translator from binary to Arduino sketch
Arduino IDE to compile and deploy code

Can it be done better?
Can it support keyboard customizations?
Can it help you with debugging?



Motivation

Pranks
Security assessment (USB stick in the car lot)
Actual hacking (insert prepared USB stick into unattended
computers, collect information, reconfigure machine)



In the news

Secret Service agent Samuel Ivanovich, who interviewed
Zhang on the day of her arrest, testified at the hearing. He
stated that when another agent put Zhang’s thumb drive
into his computer, it immediately began to install files,
a “very out-of-the-ordinary” event that he had never seen
happen before during this kind of analysis. The agent had
to immediately stop the analysis to halt any further cor-
ruption of his computer, Ivanovich testified. The analysis
is ongoing but still inconclusive, he said.

https://www.miamiherald.com/news/politics-government/
article228963409.html

https://www.miamiherald.com/news/politics-government/article228963409.html
https://www.miamiherald.com/news/politics-government/article228963409.html


Demo

DEFAULT_DELAY 500
REM open terminal
WINDOWS ENTER
STRING cat > /dev/null
ENTER
DEFAULT_DELAY 1500
STRING_DELAY 30 Wake up, Neo...
ENTER
STRING_DELAY 50 The Matrix has you...
ENTER
STRING_DELAY 30 Follow the white rabbit.
ENTER
STRING Knock, knock, Neo.
ENTER
CONTROL d
CONTROL d



Demo

$ plucky -i matrix.duck -o keyboard.c
$ make
$ make deploy



Section 2

State of Duckyscript toolchains



Official toolchain

Available at
https://github.com/hak5darren/USB-Rubber-Ducky

No license (who needs them anyway)
Designed for original hardware only
Many third-party payloads:

https://github.com/hak5darren/USB-Rubber-Ducky/
wiki/Payloads
https://ducktoolkit.com/userscripts

https://github.com/hak5darren/USB-Rubber-Ducky
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payloads
https://github.com/hak5darren/USB-Rubber-Ducky/wiki/Payloads
https://ducktoolkit.com/userscripts


Inofficial toolchains

https://github.com/mame82/duck2spark

No license (sense a theme?)
Workflow (taken from README):

echo "STRING Hello World" > test.duck
java -jar encoder.jar -i test.duck -o raw.bin -l
de
./duck2spark.py -i raw.bin -l 1 -f 2000 -o
sketch.ino
Replace sketch contents with generated script
Compile and deploy
Try out payload

https://github.com/mame82/duck2spark


Improvement chances

One tool, not three
Fast iteration cycles
Keyboard customization
Debugging capabilities
Supporting both original and custom hardware
Yet: Behavior parity



Section 3

The BASIC rundown



USB in general

USB does tons of stuff, tricky to make sense of
We want this: https://en.wikipedia.org/wiki/USB_
human_interface_device_class

USB HID supports keyboards, mice, game controllers
There’s a standardized list of 256 USB HID codes
Orthogonal: Mapping to keyboard hardware, OS
customizations
A device sends out USB HID codes with optional modifiers
representing key events
Bonus: The device doesn’t need to be a keyboard to do that
Can be legitimate (barcode scanner) and illegitimate
(Rubberducky)

https://en.wikipedia.org/wiki/USB_human_interface_device_class
https://en.wikipedia.org/wiki/USB_human_interface_device_class


Keyboards in general

USB HID codes try to be a superset of all possible keys
Keyboard layout is mapped to these USB HID codes
Sometimes the mapping is less obvious (ä on QWERTZ maps
to KEY_APOSTROPHE)
The OS can implement remapping (swapping modifiers, dead
keys, alternative layout key)
Modifiers can be both modifiers (KEY_MOD_LCTRL) and
standalone keys (KEY_LEFTCTRL)
Fun fact: KEY_MEDIA_COFFEE is a thing



Duckyscript hardware

USB stick
Storage to save exfiltrated data to
Flashed with logic to execute compiled payload
Price point: 50€



Duckyscript logic

Program is represented as a stream of bytes
Every two bytes are either a (modifier) key press or delay
Key press: Modifier byte and key byte
Delay: Delay length and zero byte



Digistump Digispark hardware

General-purpose microcontroller
Bare board with USB plug
Not quite USB stick form factor
Attiny 85 (AVR)
Little RAM, ROM, no storage
Price point: 3€



Microcontroller programming

Harvard architecture: Code separate from data
Hello world: Making a LED blink
Your code is not expected to exit
No OS, no dynamic linking, few abstractions
Simple solutions are key
No USB support: Bitbanging



Microcontroller challenges

Arduino code turns out to be C++
Refactoring the C++ code into standalone C
Updating the usbdrv/vusb library
Initialization
Waiting for time to pass
Flash memory access (C is far from ideal for Harvard
architectures)
Figuring out how keys are encoded
Size optimization



Section 4

Compiling Duckyscript



Duckyscript language

REM comment

[MODIFIER] KEY

STRING hello

STRING_DELAY 20 hello again

DELAY 100

REPEAT 3

DEFAULTDELAY 100



Implementation strategy

Tokenize
Parse with a stateful loop
Generate key press/delay commands
Verify for errors
Translate into binary/C code
Testing



Tokenization and parsing

I used comparse initially, but it turned out to be overkill for a
poorly specified language
Irregex far better for this, but it’s easy to mess up
Big complicated regexp per line: Slow, hard to understand
Dispatching on first space-separated token: Fast



Command generation

Keep track of default delay and last command
Insert default delay after STRING, STRING_DELAY and key
commands
Insert last command repeatedly for REPEAT command
Break down STRING and STRING_DELAY into repeated key
presses (with delay if requested)
Break down key combinations into modifiers and keys
Break down delays if needed (delay can be 255ms maximum)



Code generation

I initially tried using fmt-c, but it turned out to be overkill
Now: Template string, with @identifier@ placeholders
No template logic though, hardcoded replacements
Keys are translated to preprocessor macro names



Compiler customization

Hard to turn C code into binary format
Sometimes the compiler behaves different from the official one
Multi-pass approach necessary: Dumping output after each
stage
At the last stage: Decision whether to emit binary or C code



Naming woes

Everything in the code was called a key
I let the project sit for almost two years
Wrote a design document clarifying terms
Refactored to these names, then adjusted logic
It works now, tests are broken though. . .



Test corpus prep

This slide left blank for legal reasons



Unit testing

(when (not (get-environment-variable "TEST_MODE"))
(main))



Unit testing

(set-environment-variable! "TEST_MODE" "1")
(include "../plucky.scm")

(test-group ...)

(test-exit)



E2E testing

Wrote helper scripts to convert corpus to binary format with
official encoder
Wrote another test script to convert corpus to binary format
with my compiler
Test script compares the outputs and fails if a difference has
been found
Similar approach could be taken for decompilation



Section 5

Outro



What next?

Fixing tests
Decompilation
Behavior parity
Actually using it



Questions?


	Intro
	State of Duckyscript toolchains
	The BASIC rundown
	Compiling Duckyscript
	Outro

