State of Retro Gaming in Emacs

Vasilij Schneidermann

November 2020



Outline

Intro

Fun facts about chip8.el

Outro



Section 1

Intro



Vasilij Schneidermann, 28

Cyber security consultant at msg systems
mail@vasilij.de
https://depp.brause.cc/

http://emacsninja.com/


https://depp.brause.cc/
http://emacsninja.com/

Motivation

m Emacs is the ultimate procrastination machine
m Many fun demonstrations:

m Order salad online
Window manager
IRC bot

Textual web browser
Basic games

3D maze
Z-Machine emulator
Audio/video editor
Sex toy controller

m Can we emulate retro games at 60 FPS?



Meet chip8.el

https://depp.brause.cc/chip8.el
Pretty much finished, <1000SLOC
Supports Super CHIP-8 extensions

Runs at full speed, games behave OK


https://depp.brause.cc/chip8.el

Section 2

Fun facts about chip8.el



What the hell is a CHIP-8 anyway?

It's a VM, not a console
Designed for easy porting of home computer games
Not terribly successful

Small community of enthusiasts writing games for it

There are even a few demos!



System specs

CPU: 8-Bit, 16 registers, 36 fixed-size instructions
RAM: 4KB

Stack: 16 return addresses

Resolution: 64 x 32 black/white pixels

Rendering: Sprites are drawn in XOR mode

Sound: Monotone buzzer

Input: Hexadecimal keypad



How does it work?

Runs at an unspecified speed
Sound and delay timer count down at 60FPS
Game is loaded up at #x200 into RAM

Program counter is set to #x200

Decode instruction, execute, loop



Game loop woes

Game approach: Do stuff, wait, repeat

Doesn't work well in Emacs due to user input
Interruptible sleep: Unpredictable

Un-interruptable sleep: Freezes

Timers: Inversion of control, allows user input to happen

Call a timer function at 60FPS, don't do too much in it:

m Execute CPU cycle(s)
m Decrement sound/delay registers
m Repaint



Mapping the system to Emacs Lisp

m It's all integers and vectors (of integers)

m RAM, registers, return stack, key state, screen, etc.
m Stored in global variables

m No lists are used at all

m Side effect: No consing happens, no GC pauses



Decoding instructions

All instructions are two bytes

Arguments are encoded inside them

JP nnn for example maps to #x1nnn

Type extracted by masking with #xF000, then shifting by 12
bits

Argument by masking with #xOFFF (no shift needed)

Common patterns emerge, like addresses being the last three
nibbles

Big cond dispatching on the type and executing side effects



Testing

Initially: Execute ROM until user hits C-g

Use debug command to render screen to a buffer

Initial test with tiny ROMs that just display a static screen
| added instructions as needed, went through more of them
Later | wrote a unit test suite as safety net

Each test initializes the VM, loads up code, executes the
chip8-cycle function, checks for side effects



Debugging

My usual approach of using edebug was ineffective

Therefore: Logging it is

| compared my log output with an instrumented version of this
emulator: https://git.foldling.org/chick-8.git

If the logs diverge, that's where the bug lies
Future project idea: A CHIP-8 debugger


https://git.foldling.org/chick-8.git

Analysis

Writing a disassembler is simple, but tedious
Adding analysis functionality is particularly tricky
Idea: Reuse radare2 framework, add analysis/disasm plugin

| wrote one in Python, then discovered there is one in core. ..

| then improved that one to the same level



Rendering

By far the trickiest part

| intentionally decided against using a library

Creating SVGs: Too expensive

Creating/mutating strings: Too expensive or complicated
Changing SVG tiles: Gaps between lines

Bool vector backed XPM: Caching effects ruin everything
Plain text with background color: Perfect

Many optimization attempts until | got there



m You only need a beep, so no difficulties emulating it

m Playing it is hard because Emacs only supports synchronous
playback. ..

m Emacs processes are asynchronous, so controlling one works
m mplayer has a slave mode, mpv supports listening on a FIFO
for commands

m Proof of concept:

m Start paused mpv with a FIFO in loop mode
m Send pause/unpause command to the FIFO



Section 3



= Maybe an Intel 8080 emulator running CP/M

m Maybe experimentation with faster rendering
m More serious stuff in CHICKEN, like NES or GB emulator



Questions?




	Intro
	Fun facts about chip8.el
	Outro

