
State of Retro Gaming in Emacs

Vasilij Schneidermann

November 2020



Outline

1 Intro

2 Fun facts about chip8.el

3 Outro



Section 1

Intro



About

Vasilij Schneidermann, 28
Cyber security consultant at msg systems
mail@vasilij.de
https://depp.brause.cc/

http://emacsninja.com/

https://depp.brause.cc/
http://emacsninja.com/


Motivation

Emacs is the ultimate procrastination machine
Many fun demonstrations:

Order salad online
Window manager
IRC bot
Textual web browser
Basic games
3D maze
Z-Machine emulator
Audio/video editor
Sex toy controller

Can we emulate retro games at 60 FPS?



Meet chip8.el

https://depp.brause.cc/chip8.el

Pretty much finished, <1000SLOC
Supports Super CHIP-8 extensions
Runs at full speed, games behave OK

https://depp.brause.cc/chip8.el


Section 2

Fun facts about chip8.el



What the hell is a CHIP-8 anyway?

It’s a VM, not a console
Designed for easy porting of home computer games
Not terribly successful
Small community of enthusiasts writing games for it
There are even a few demos!



System specs

CPU: 8-Bit, 16 registers, 36 fixed-size instructions
RAM: 4KB
Stack: 16 return addresses
Resolution: 64 x 32 black/white pixels
Rendering: Sprites are drawn in XOR mode
Sound: Monotone buzzer
Input: Hexadecimal keypad



How does it work?

Runs at an unspecified speed
Sound and delay timer count down at 60FPS
Game is loaded up at #x200 into RAM
Program counter is set to #x200

Decode instruction, execute, loop



Game loop woes

Game approach: Do stuff, wait, repeat
Doesn’t work well in Emacs due to user input
Interruptible sleep: Unpredictable
Un-interruptable sleep: Freezes
Timers: Inversion of control, allows user input to happen
Call a timer function at 60FPS, don’t do too much in it:

Execute CPU cycle(s)
Decrement sound/delay registers
Repaint



Mapping the system to Emacs Lisp

It’s all integers and vectors (of integers)
RAM, registers, return stack, key state, screen, etc.
Stored in global variables
No lists are used at all
Side effect: No consing happens, no GC pauses



Decoding instructions

All instructions are two bytes
Arguments are encoded inside them
JP nnn for example maps to #x1nnn

Type extracted by masking with #xF000, then shifting by 12
bits
Argument by masking with #x0FFF (no shift needed)
Common patterns emerge, like addresses being the last three
nibbles
Big cond dispatching on the type and executing side effects



Testing

Initially: Execute ROM until user hits C-g
Use debug command to render screen to a buffer
Initial test with tiny ROMs that just display a static screen
I added instructions as needed, went through more of them
Later I wrote a unit test suite as safety net
Each test initializes the VM, loads up code, executes the
chip8-cycle function, checks for side effects



Debugging

My usual approach of using edebug was ineffective
Therefore: Logging it is
I compared my log output with an instrumented version of this
emulator: https://git.foldling.org/chick-8.git
If the logs diverge, that’s where the bug lies
Future project idea: A CHIP-8 debugger

https://git.foldling.org/chick-8.git


Analysis

Writing a disassembler is simple, but tedious
Adding analysis functionality is particularly tricky
Idea: Reuse radare2 framework, add analysis/disasm plugin
I wrote one in Python, then discovered there is one in core. . .
I then improved that one to the same level



Rendering

By far the trickiest part
I intentionally decided against using a library
Creating SVGs: Too expensive
Creating/mutating strings: Too expensive or complicated
Changing SVG tiles: Gaps between lines
Bool vector backed XPM: Caching effects ruin everything
Plain text with background color: Perfect
Many optimization attempts until I got there



Sound

You only need a beep, so no difficulties emulating it
Playing it is hard because Emacs only supports synchronous
playback. . .
Emacs processes are asynchronous, so controlling one works
mplayer has a slave mode, mpv supports listening on a FIFO
for commands
Proof of concept:

Start paused mpv with a FIFO in loop mode
Send pause/unpause command to the FIFO



Section 3

Outro



What next?

Maybe an Intel 8080 emulator running CP/M
Maybe experimentation with faster rendering
More serious stuff in CHICKEN, like NES or GB emulator



Questions?


	Intro
	Fun facts about chip8.el
	Outro

