
State of Retro Gaming in Emacs

Vasilij Schneidermann

April 2019



Outline

1 Intro

2 Interactive demonstrations

3 Fun facts about chip8.el

4 Outro



Section 1

Intro



About

Vasilij Schneidermann, 26
Software developer at bevuta IT, Cologne
mail@vasilij.de
https://github.com/wasamasa

http://emacshorrors.com/

http://emacsninja.com/

https://github.com/wasamasa
http://emacshorrors.com/
http://emacsninja.com/


Motivation

Emacs is the ultimate procrastination machine
Many fun demonstrations:

Order salad online
Window manager
IRC bot
Textual web browser
Basic games
3D maze
Z-Machine emulator
Audio/video editor
Sex toy controller

Can we emulate retro games at 60 FPS?



Context

Prior art at FrOSCon/Quasiconf: Audiovisual demonstrations
NES emulators are supposed to be simple
Random Japanese guy beat me to the punch
Recommended emulation project: CHIP-8
Alternative: Intel 8080 running Space Invaders or CP/M
Then someone else released a GB emulator. . .



Section 2

Interactive demonstrations



NES

https://github.com/gongo/emacs-nes

Super slow (100x), doesn’t go beyond initial game screen
Most time spent in rendering
Could maybe be made to work at acceptable speed with lots of
frameskip?

https://github.com/gongo/emacs-nes


GB

https://github.com/vreeze/eboy

WIP, released in a hurry after I released mine
Almost playable thanks to lots of frameskip
Only Tetris works
The most popular

https://github.com/vreeze/eboy


CHIP-8

https://github.com/wasamasa/chip8.el

Pretty much finished, <1000SLOC
Supports Super CHIP-8 extensions
Runs at full speed, games behave OK

https://github.com/wasamasa/chip8.el


Section 3

Fun facts about chip8.el



What the hell is a CHIP-8 anyway?

It’s a VM, not a console
Designed for easy porting of home computer games
Not terribly successful
Small community of enthusiasts writing games for it
There are even a few demos!



System specs

CPU: 8-Bit, 16 general-purpose registers, 36 instructions, each
two bytes large
RAM: 4KB
Stack: 16 return addresses
Resolution: 64 x 32 black/white pixels
Rendering: Sprites are drawn in XOR mode
Sound: Monotone buzzer
Input: Hexadecimal keypad



Goals

Coming up with a name
Obtaining a ROM pack
Understanding the system
Basic RE tools
Rendering
Beeps
Make as many games run as possible
No debugger



How does it work?

Runs at an unspecified speed
Sound and delay timer count down at 60FPS
Game is loaded up at #x200 into RAM
Program counter is set to #x200

Decode instruction, execute, loop



Game loop woes

Game approach: Do stuff, wait, repeat
Doesn’t work terribly well in Emacs due to user input
Interruptible sleep: Unpredictable
Un-interruptable sleep: Freezes
Timers: Inversion of control, allows user input to happen
Call a timer function at 60FPS, don’t do too much in it:

Execute CPU cycle(s)
Decrement sound/delay registers
Repaint



Mapping the system to Emacs Lisp

It’s all integers and vectors (of integers)
RAM, registers, return stack, key state, screen, etc.
Stored in global variables
No lists are used at all
Side effect: No consing happens, no GC pauses
Registers are mapped to a vector with an enum macro
Side effect: Much easier decoding



Built-in sprites

Unspecified
Everyone steals them from the canonical implementation
Super CHIP-8 has bigger sprites
I upscaled the small ones using a terrible Ruby oneliner
Lesson here: Sometimes it’s not worth being clever



Decoding instructions

All instructions are two bytes
Arguments are encoded inside them
JP nnn for example maps to #x1nnn

Type extracted by masking with #xF000, then shifting by 12
bits
Argument by masking with #x0FFF (no shift needed)
Common patterns emerge, like addresses being the last three
nibbles
Big cond dispatching on the type and executing side effects
Common side effect: Bumping program counter by two



Interactive Testing

Initially: Execute ROM until user interrupt
Use a debug command to render screen to a buffer
Maze: Small ROM, few instructions
There are many more ROMs that just display a static screen
I went through them all and added instructions as needed



Debugging

My usual approach of using edebug was ineffective
Therefore: Logging it is
I compared my log output with an instrumented version of
evhan’s chick-8 emulator
If the logs diverge, that’s where the bug lies
Future project idea: A CHIP-8 debugger, game development
environment
Inspirations:

https://massung.github.io/CHIP-8/
http://johnearnest.github.io/Octo/

https://massung.github.io/CHIP-8/
http://johnearnest.github.io/Octo/


Analysis

Writing a disassembler is simple, but tedious
Adding analysis functionality is particularly tricky
Idea: Reuse radare2 framework, add analysis/disasm plugin
I wrote one in Python, then discovered there is one in core. . .
I then improved that one to the same level



Unit testing

Goal: Coverage of all instructions and what they do
More of a safety net, doesn’t catch everything
Built-in ERT library isn’t terribly good
https://github.com/jorgenschaefer/emacs-buttercup
is better
Each test initializes the VM, loads up code, executes the
chip8-cycle function, checks for side effects

https://github.com/jorgenschaefer/emacs-buttercup


Rendering

By far the trickiest part
I intentionally decided against using a library
Creating SVGs: Too expensive
Creating/mutating strings: Too expensive or complicated
Changing SVG tiles: Gaps between lines
Bool vector backed XPM: Caching effects ruin everything
Plain text with background color: Perfect



Rendering optimization

Initially: Clear buffer, insert text
Better: Move across text, delete and insert changed parts
Optimization: Track dirty frame
Changed parts: Diff two framebuffers
Final optimization: Erasing text was slow, changing
background text property was way faster
Future optimization: Make a C module with a fast canvas



Garbage collection

Occasionally there was a small stutter
This turned out to be code duplicating vectors
Solution: Writing a memcpy-style function
Delays after every few tests
Solution: Using a memset-like function instead of recreating
vectors
Hard to profile and spot, may require a custom package



Sound

You only need a beep, so no difficulties emulating it
Playing it is hard because Emacs only supports synchronous
playback. . .
Emacs processes are asynchronous, so controlling one works
mplayer has a slave mode, mpv supports listening on a FIFO
for commands
Proof of concept:

Start paused mpv with a FIFO in loop mode
Send pause/unpause command to the FIFO



User input (non-blocking)

Checking for key press state: Unsupported
Solution: Global key handler stores key press timestamp
Compare the timestamp with current time against timeout
Key considered pressed if less than timeout
Requires tweaking to feel "natural"



User input (blocking)

Tricky due to inversion of control
Required me to do a state machine rewrite
The command transfers the emulator into a waiting state
The global key handler checks for that state and transfers to
the playing state



Super CHIP-8

Supports more interesting games
Proper scrolling support requires tricks to do in-place
Doubled resolution required an extra rendering optimization
It’s possible to switch between both modes, making it tricky to
implement:

You could always work in high-res and downscale if needed
Alternatively: Switch between low-res and high-res screen to
render to
I went for the latter



Other stuff

Sometimes games deviate from the reference, conflicting with
it
Sometimes it’s unclear whether it’s worth it to support an
obscure feature
I’m not good at games and didn’t enjoy playing them
However: You gain great insight how the machine works



Section 4

Outro



What next?

Maybe an Intel 8080 emulator running CP/M
Maybe experimentation with faster rendering
More serious stuff in CHICKEN, like NES or GB emulator



Questions?


	Intro
	Interactive demonstrations
	Fun facts about chip8.el
	Outro

