
Knowing Just Enough Crypto to be Dangerous

Vasilij Schneidermann

April 2018



Outline

1 Intro

2 Selected attacks

3 Outro



Section 1

Intro



About

Vasilij Schneidermann, 25
Software developer at bevuta IT, Cologne
mail@vasilij.de
https://github.com/wasamasa

http://emacshorrors.com/

http://emacsninja.com/

https://github.com/wasamasa
http://emacshorrors.com/
http://emacsninja.com/


Motivation

The current state of crypto is worrisome
More attacks found than ever
Rise in papers on side-channel attacks
Yet: Most people ignore crypto or focus on a specific
application (like, crypto currencies)
How does one learn it?
How hard can it be?



Context

Looking for programming challenges, most were boring
Cryptopals challenges:

Well designed, incremental
Cover several fields (symmetric/asymmetric crypto, signing,
PRNG, hashing, zero-knowledge proofs, protocols/handshakes)
Programming language doesn’t matter
Can be completed offline
You measure your own progress



Basics

Confidentiality, Integrity, Authenticity
Symmetric and asymmetric cryptography
Plaintext, ciphertext
Key, IV, nonce
Block and stream cipher modes



Section 2

Selected attacks



Candidates

Crack an MT19937 seed
Single-byte XOR cipher
CBC bitflipping attacks
Break “random access read/write” AES CTR
Compression Ratio Side-Channel Attacks



Crack an MT19937 seed

This one doesn’t even involve crypto
MT19937 is a very popular PRNG
Some people use it for crypto. . .
Some people seed it from the current time. . .
Given a MT19937 output seeded with a UNIX timestamp from
a few minutes ago, how do you figure out the seed?



Crack an MT19937 seed

(use extras posix (prefix random-mtzig mt19937:))

(define (random-number seed)
(let ((rng (mt19937:init seed)))

(mt19937:random! rng)))

(define now (inexact->exact (current-seconds)))
(define then (- now 123))
(define rng-output (random-number then))



Crack an MT19937 seed

PRNG generates a specific sequence of numbers for a given
seed
If you use the same seed as for a previous run, you get the
same numbers
Idea: Try possible timestamps as seed values, check whether
generated numbers match up



Crack an MT19937 seed

(define (crack-it starting-time rng-output)
(let loop ((seed starting-time))

(if (= (random-number seed) rng-output)
seed
(loop (sub1 seed)))))

(printf "Predictable seed: ~a, output: ~a\n" then rng-output)
(printf "Cracked seed: ~a\n" (crack-it now rng-output))



Crack an MT19937 seed

Complexity: Negligible
Workaround: Never seed with predictable data, use the
CSPRNG your OS provides for seeding (good libraries will do
that for you)
Combining many different entropy sources (PID, number of
cores, etc.) is a popular alternative, but not much better:
https://blog.cr.yp.to/20140205-entropy.html

https://blog.cr.yp.to/20140205-entropy.html


Single-byte XOR cipher

Equivalent of the caesar cipher, but with XOR instead of
rotation
XOR is reversible, x ⊕ y = z , z ⊕ y = x , z ⊕ x = y
Given a message in English with every byte XOR’d against a
secret byte, figure out the message



Single-byte XOR cipher

We can do this by introducing a scoring function for a piece of
text
The more it looks like English, the higher the score
Non-ASCII gives a failing score
Use Chi-Squared test for comparing given to ideal distribution
The decryption with the best score is the right one



Single-byte XOR cipher

(define (hexdecode string)
(map (cut string->number <> 16)

(string-chop string 2)))

(define ciphertext
(hexdecode (string-append "48434248404e452b5868636e666e2b"

"796e626c65782b787e7b796e666e")))

(define (str bytes)
(list->string (map integer->char bytes)))

(define (ascii? string)
(every (lambda (char) (<= 0 (char->integer char) 127))

(string->list string)))



Single-byte XOR cipher

(define (xor-bytes-with-byte bytes byte)
(map (lambda (b) (bitwise-xor b byte)) bytes))

(define english-histogram
(alist->hash-table
'((#\space . 0.14) (#\. . 0.09)

(#\e . 0.12) (#\t . 0.09) (#\a . 0.08)
(#\o . 0.07) (#\i . 0.06) (#\n . 0.06)
(#\s . 0.06) (#\h . 0.06) (#\r . 0.05)
(#\d . 0.04) (#\l . 0.04) (#\u . 0.02)
;; ...
)))



Single-byte XOR cipher

(define (frequencies string)
(let ((ht (make-hash-table))

(total (string-length string)))
(for-each (lambda (char)

(hash-table-update!/default ht char add1 0))
(string->list string))

(hash-table-walk ht (lambda (k v)
(hash-table-set! ht k (/ v total))))

ht))



Single-byte XOR cipher

(define (chi-squared hist1 hist2)
(hash-table-fold
hist1
(lambda (k v1 score)

(let ((v2 (hash-table-ref/default hist2 k 0)))
(if (zero? v1)

score
(+ score (/ (expt (- v1 v2) 2) v1)))))

0))



Single-byte XOR cipher

(define (english-score string)
(if (ascii? string)

(let* ((input (string-downcase string))
(input (irregex-replace/all "[^ a-z]" input "."))
(hist (frequencies input))
(score (/ 1 (chi-squared english-histogram hist))))

(if (< (hash-table-ref/default hist #\. 0) 0.05)
(* score 2)
score))

0))



Single-byte XOR cipher

(let loop ((byte 0)
(best-score 0)
(best-solution ""))

(if (< byte 256)
(let* ((solution (str (xor-bytes-with-byte ciphertext byte)))

(score (english-score solution)))
(if (> score best-score)

(loop (add1 byte) score solution)
(loop (add1 byte) best-score best-solution)))

(begin
(printf "Score: ~a\n" best-score)
(print best-solution))))



Single-byte XOR cipher

Hardest part: Coming up with a usable scoring function
Keys longer than a single byte can still be cracked with a
similar approach
Some broken cryptosystems revert to this difficulty level. . .



CBC bitflipping attacks

Let’s move on to actual crypto with AES
ECB is broken, so this one uses CBC mode
Suppose an attacker retrieved a cookie encrypted with
AES-CBC, resembling comment=1234567890&uid=3

The attacker likes to modify the cookie to end in uid=0 to
become admin, however they can’t just decrypt, modify and
re-encrypt
Watch what happens if they just modify the ciphertext and
what the resulting plaintext is. . .



CBC bitflipping attacks

Modification: XOR the first byte with a random byte

regular: 636f6d6d656e743d31323334353637383930267569643d33
tampered: 81436eafdd906ac37874635465fa81fb3a30267569643d33

Result: First block is completely different, first byte of second block
has been XOR’d with that random byte



CBC bitflipping attacks

Figure: Source: Wikipedia



CBC bitflipping attacks

(define key (random-bytes 16))
(define iv (random-bytes 16))
(define plaintext "comment=1234567890&uid=3")
(define ciphertext

(aes-cbc-encrypt (pkcs7pad (bytes plaintext) 16) key iv))

(define (check ciphertext)
(let* ((plaintext (str (pkcs7unpad (aes-cbc-decrypt ciphertext

key iv))))
(params (form-urldecode plaintext))
(uid (alist-ref 'uid params)))

(printf "checking ~s...\n" plaintext)
(when (not uid)

(error "invalid string"))
(string->number uid)))



CBC bitflipping attacks

;; existing byte is '3' and should become '0'
(define tampered-byte (bitwise-xor (char->integer #\3)

(char->integer #\0)))
(define tampered

;; the uid is byte #8 of block #2, so manipulate it in block #1
(update-at (cut bitwise-xor <> tampered-byte) 7 ciphertext))

(printf "regular UID: ~a\n" (check ciphertext))
(printf "tampered UID: ~a\n" (check tampered))



CBC bitflipping attacks

Other cipher modes have similar behavior (with CTR the same
block is affected, no corruption of other blocks)
Solution: Sign your cookies, verify the signature to ensure it
hasn’t been tampered with
Weaker solution: Introduce a checksum to validate the
integrity
Alternative: Use cipher mode with integrated authentication
(like AES-GCM)



Break “random access read/write” AES CTR

AES again, but this time with a stream cipher
Suppose an attacker retrieves a message encrypted with
AES-CTR
The message originates from a web application that allows
editing them and re-encrypts the result
This re-encryption can be done efficiently thanks to CTR
allowing you to “seek” into the keystream and allows you to
patch in the changed portion of the text
Luckily the attacker has access to
(edit ciphertext offset newtext) which returns the
new ciphertext after editing



Break “random access read/write” AES CTR

(define key (random-bytes 16))
(define nonce (random (expt 2 32)))
(define ciphertext (aes-ctr-encrypt plaintext key nonce))

(define (edit* ciphertext key nonce offset newtext)
(let* ((decrypted (aes-ctr-decrypt ciphertext key nonce))

(before (take decrypted offset))
(after (drop decrypted (+ offset (length newtext))))
(patched (append before newtext after)))

(aes-ctr-encrypt patched key nonce)))

(define (edit ciphertext offset newtext)
(edit* ciphertext key nonce offset newtext))



Break “random access read/write” AES CTR

Figure: Source: Wikipedia



Break “random access read/write” AES CTR

The transformation is far simpler than CBC
Unknown plaintext is XORed with an encrypted key stream
depending on a nonce
Pu ⊕ E (k ,K ,N)

If the attacker XORs a known ciphertext with the existing one,
something interesting happens:
Pu ⊕ E (k ,K ,N)⊕ Pk ⊕ E (k ,K ,N) = Pu ⊕ Pk

The attacker knows his own plaintext, but not the other one
Pu ⊕ Pk ⊕ Pk = Pu



Break “random access read/write” AES CTR

(define (decrypt ciphertext)
(let* ((our-plaintext (random-bytes (length ciphertext)))

(our-ciphertext (edit ciphertext 0 our-plaintext)))
(xor-bytes
(xor-bytes ciphertext our-ciphertext)
our-plaintext)))

(print (str (decrypt ciphertext)))



Break “random access read/write” AES CTR

Bonus: The edit procedure allows a crypto-agnostic (slow)
way to decrypt the message one byte at a time
Suppose the attacker compares an edited ciphertext with the
original, it will always be different
However if the edit didn’t change the content, both ciphertexts
will be the same
This can be used to guess part of the plaintext
For a byte at a given offset, guess all possible values, one of
them will reveal the plaintext byte
Repeat for all possible offsets and join all found plaintext bytes



Break “random access read/write” AES CTR

Ultimately, this attack is enabled by nonce reuse, randomize
the nonce and the keystreams no longer match up
For the bonus one, it should be impossible to tell if a guess
was successful or better, the resulting encryption result
shouldn’t be leaked
Imagine if someone used this CTR property for something like
FDE. . .



Compression Ratio Side-Channel Attacks

This one is a side-channel attack and circumvents crypto
Suppose the attacker is MITM and intercepts encrypted traffic
resembling HTTP
Additionally to that they can inject their own content (like, by
changing the query to contain a search term)
They know there’s a cookie inside the header and want to
guess it
If the response is compressed before encryption, this can be
done by checking the compressed size



Compression Ratio Side-Channel Attacks

Compression generally works by finding repeating subsequences
and replacing these with something shorter
Suppose we compress a string containing sessionid=abcdef,
a subsequent sessionid=a will result in better compression
than a subsequent sessionid=b
Generally, the difference in reduction is measured in bits, but
will often be enough to differ by a byte



Compression Ratio Side-Channel Attacks

(define (format-request input)
(format "POST / HTTP/1.1

Host: example.com
Cookie: sessionid=~a
Content-Length: ~a
~a
" session-id (string-length input) input))

(define (oracle input)
(let ((key (random-bytes 16))

(nonce (random (expt 2 32))))
(length (aes-ctr-encrypt (bytes (compress (format-request input)))

key nonce))))



Compression Ratio Side-Channel Attacks

POST / HTTP/1.1
Host: example.com
Cookie: sessionid=Q0hJQ0tFTiBTY2hlbWUgcmVpZ25zIHN1cHJlbWU
Content-Length: 21
sessionid=Pdu0Jaesh9n

(oracle "sessionid=Pdu0Jaesh9n") ;=> 121



Compression Ratio Side-Channel Attacks

POST / HTTP/1.1
Host: example.com
Cookie: sessionid=Q0hJQ0tFTiBTY2hlbWUgcmVpZ25zIHN1cHJlbWU
Content-Length: 21
sessionid=Qdu0Jaesh9n

(oracle "sessionid=Qdu0Jaesh9n") ;=> 120



Compression Ratio Side-Channel Attacks

Try each byte and record the guesses
A guess with a shorter compression size is likely to be correct
Add the guessed byte to the list of known bytes
If there’s no good guess, either we’ve failed early or there’s no
more bytes to guess and we’re done
To avoid false positives, add uncompressable (random) junk



Compression Ratio Side-Channel Attacks

(define (guess-byte known)
(let ((guesses (make-hash-table))

;; this improves our chances considerably
(suffix (random-bytes 10 from: 128 to: 256)))

(for-each (lambda (byte)
(let* ((guess (append known (list byte) suffix))

(input (format "sessionid=~a" (str guess))))
(hash-table-set! guesses byte (oracle input))))

charset)
(min-max-by cdr (hash-table->alist guesses))))

(define (guess-bytes)
(let loop ((known '()))

(receive (min max) (guess-byte known)
(if (< (cdr min) (cdr max))

(let ((known (append known (list (car min)))))
(report-progress (str known) "guessed: ")
(loop known))

known))))



Compression Ratio Side-Channel Attacks

This is a simplified version of actual attacks, like CRIME,
BREACH, HEIST
No real fix for this one (other than disabling compression)
Other workarounds:

Use crypto that pads to block sizes (like AES-CBC, easy to
work around)
Have the web server add random junk to the end (can be
probably worked around with repeated guessing)
Add padding that makes the length uniform (as suggested by
an expired TLS RFC draft)
Use XSRF tokens to mitigate the results of cookie stealing
(good luck applying that to every web application. . . )



Section 3

Outro



Summary

There’s lots of crypto out there not involving hard math
Good amount of well-understood attacks
Side-channel attacks are scary and circumvent crypto
Crypto systems aren’t necessarily as safe as the primitives they
consist of
"Don’t roll your own crypto" applies to primitives and
cryptosystems
You should totally do the cryptopals challenges



Questions?


	Intro
	Selected attacks
	Outro

