
Playing the piano with Kawa

Vasilij Schneidermann

October 2017

Outline

1 Intro

2 Prerequisites

3 Tour through waka

4 Outro

Section 1

Intro

About

Vasilij Schneidermann, 25
Software developer at bevuta IT, Cologne
Still contracting at $BIGCORP
v.schneidermann@gmail.com
https://github.com/wasamasa
http://emacshorrors.com/
http://emacsninja.com/

https://github.com/wasamasa
http://emacshorrors.com/
http://emacsninja.com/

Why am I doing this?

I never received proper musical education
I still want to cover songs and maybe compose tunes
MIDI keyboards are bulky
DAWs and GUI composition software is distracting
Idea: Making my own thing with a text editor style workflow
Reusing MIDI and OSC standards for control

Inspiration for this project

https://blog.djy.io/
alda-a-manifesto-and-gentle-introduction/
Pretty much what I looked for
But: I’m not much of a fan of Clojure for this
Overly complicated (networked, too much code, many
dependencies)
Lacks a feature I want (free play)
Doesn’t work properly for me (networking needs to be
manually set up)
How hard can it be to do this in a JVM Scheme?

https://blog.djy.io/alda-a-manifesto-and-gentle-introduction/
https://blog.djy.io/alda-a-manifesto-and-gentle-introduction/

Kawa

Been around since 1998, supporting R5RS, R6RS, R7RS with
plenty SRFIs and own extensions
Fast startup, compilation, decent speed
Good interop syntax, emitting (anonymous) classes is simple
High-quality, only found documentation bugs so far
Biggest downside: Little own tooling (you’re supposed to use
ant for building JARs…)

Meet waka!

Sorry about the name
Requires JLine3 (terminal interaction) and
javax.sound.midi (generate and play MIDI)
Live demo time (let’s hope this doesn’t go wrong…)

Section 2

Prerequisites

MIDI

The universal standard for transmitting music events
MIDI controllers (keyboards)
MIDI sequencers
MIDI synthesizers
Standard MIDI files
MIDI cables
Soundbanks, Soundfont format

MIDI limitations

16 channels (each dedicated to a device/synth)
Channel 9 is for percussion
Tracks for logical grouping
Files can have a single track, multiple tracks or multiple
arrangements
128 instruments in 16 groups (GM standard)
Special events for channel volume, pitch bending, tempo, …

javax.sound.midi

Java SE has javax.sound.sampled (low-level audio
playback) and javax.sound.midi (complete MIDI
implementation)
Supports:

Parsing MIDI
Loading soundbanks
Generating sequences
Playing them on a sequencer
Writing them to disk
Plenty of classes to represent many aspects of MIDI

Bonus: Promises

Problem: Part of javax.sound.midi is async
Interpreter quits after playing MIDI because it doesn’t block
until finish
Solution: Make it block by forcing a promise and resolving it
in the asynchronously called event handler when encountering
MIDI end event

Bonus: Promises code

(let ((done (promise)))
(sequence-thunk)
(Sequencer:addMetaEventListener
sequencer
(lambda (message)

(when (= (MetaMessage:getType message) END-OF-TRACK)
(promise-set-value! done #t)
(quit!))))

(Sequencer:start sequencer)
(force done))

JLine3

Otherwise optional dependency for Kawa
Free play mode requires reacting immediately to a pressed key
Accomplished by enabling raw mode (and disabling it on quit)
Catch exceptions to quit in a controlled manner
Bonus features: Read line with line editing, persistent history

Section 3

Tour through waka

Features

Free play mode (type chars, hear notes)
REPL mode (send a line, hear a line of notes) with history
Parses a subset of Alda’s syntax
Basic error handling and messages
Customizable defaults
Batch playback of MIDI/waka files
Conversion of waka files to MIDI files
Implemented in < 1000 SLOC (Alda is almost 7000 SLOC)

Free play mode

Cheapo MIDI keyboard replacement
Converts keyboard letter to MIDI note and creates a NoteOn
event
Prints the corresponding syntax for copying output into a
waka file
Lookup can be done in a custom map
Octave switching with < and >
Toggle to REPL mode with C-SPC
Workflow: Try out suitable notes, switch to REPL mode after
figuring out the right notes for a line

REPL mode

Parses a terse syntax adapted from Alda into AST for a
sequence
RET synthesizes MIDI sequence from AST and plays it back
Fancy line editing provided by JLine3
Workflow: Edit current line and play it back with correct
timing, copy the composed lines into a waka file

Batch mode

Parses a multi-track score into a list of sequences
Converts those to a multi-track MIDI sequence
Either plays it back or writes it to disk
Future improvement: Dump AST for custom export
(Lilypond?)

Syntax

Notes: c d e f g a b
Setting a duration: c1 c2 c4 c8 c16 c32 (last duration
persists)
Dotted notes (increase last duration by 1.5): c d e.
Ties: c1~1
Durations default to 1

4 and persist until next specified
duration: c4 d e f g2 g
Accidentals: c c+ c- c_

Syntax

Chords: c/e/g c/e-/g
Rests: r4 r1~1 r
Bars (considered whitespace): r1 r r r | r2 r | r4
Octave shift: a > c e r2 e c < a
Octave change: o0 c o2 c o4 c o6 c o8 c
Sexp: (tempo 120) (tempo)
Comments: # you won't see me

Sequences vs scores

Sequence consists of whitespace-separated items
c4 d e f | g2 g
Score consists of sequences, each preceded by a name
main: o4 c1 d e f g a b > c
backing: o4 c1 < b a g f e d < c

Lexing

Simple lexer pass to eliminate comments, split on whitespace,
find tokens and read inline sexps
State keeping with a string port
Collect every token/sexp into a list and reverse it
Create a token port with peek-token / read-token
procedures

Lexing code

(let loop ((tokens '()))
(let ((char (peek-char port)))

(if (eof-object? char)
(reverse tokens)
(cond ((whitespace? char)

(read-whitespace port) (loop tokens))
((eqv? char #\#)
(read-line port) (loop tokens))

((eqv? char #\()
(loop (cons (read port) tokens)))

(else
(loop (cons (read-token port) tokens)))))))

Lexing code

(define (whitespace? char)
(or (char-whitespace? char) (eqv? char #\|)))

(define (read-whitespace port)
(let loop ()

(when (whitespace? (peek-char port))
(read-char port))))

(define (read-token port)
(let loop ((chars '()))

(let ((char (peek-char port)))
(if (and (not (eof-object? char))

(not (whitespace? char))
(not (memv char '(#\; #\())))

(loop (cons (read-char port) chars))
(list->string (reverse chars))))))

Parsing

Hand-written recursive descent parser
Every grammar rule corresponds to a procedure receiving a
token port or string port and returns part of the AST
Makes up most of the code (> 200 SLOC)
Errors halt parsing and bubble up to REPL / shell

Parsing code

(define (read-note port)
(let ((key (read-key port)))

(if key
(let loop ((modifiers '()))

(let ((modifier (read-modifier port)))
(if modifier

(loop (cons modifier modifiers))
`(note (key . ,key)

,@(reverse modifiers)))))
#f)))

(define (read-key port)
(if (memv (peek-char port)

'(#\a #\b #\c #\d #\e #\f #\g))
(read-char port)
#f))

Error handling

Error handling code interwoven with parsing
Extract current column from string port, point at erroneous
char in token
Last token held in a parameter

midi> cxxx
Error: Trailing garbage
cxxx
^^^

Error handling code

(guard
(ex
((parse-error-object? ex)
(display "Error: ")
(print (parse-error-message ex))
(let* ((token (parse-error-token ex))

(indent (port-column (parse-error-port ex)))
(width (string-length token)))

(print token)
(display (make-string indent #\space))
(display (make-string (max (- width indent) 1) #\^))
(newline)
(loop)))

...)
...)

Section 4

Outro

Missing features

Auto-completion for sexps in REPL mode
Channel and multiple instruments support, instrument aliases
Percussion support (channel 9)
Key signatures and naturals
Legato / sustain (slurs)
Repetition syntax for notes / subsequences
Arbitrary durations, tuplets (CRAM)
Arpeggiated chords, glissando/portamento, trills

Future Plans

Generate as good sound as Alda, steal other useful features
Transcribe more sheet music
Allow some way to import/export to other formats (MIDI
import / Lilypond export)
Debug sound issues (ideally by adding a debug mode and
writing scripts that dissect generated MIDI)
Better test suite

Singalong

Let’s play a classic!
🎜 Fly Me To The Moon 🎝

Questions?

	Intro
	Prerequisites
	Tour through waka
	Outro

