
The state of R7RS - Implementing MAL in
portable Scheme

Vasilij Schneidermann

October 2017

Outline

1 Intro

2 RNRS

3 Evaluation with MAL

4 Outro

Section 1

Intro

About

Vasilij Schneidermann, 25
Software developer at bevuta IT, Cologne
Currently contracting at $BIGCORP
v.schneidermann@gmail.com

https://github.com/wasamasa

http://emacshorrors.com/

http://emacsninja.com/

https://github.com/wasamasa
http://emacshorrors.com/
http://emacsninja.com/

Motivation

CHICKEN isn’t the only Scheme worth using
R5RS without extensions is rather limiting
R6RS failed (Chez not withstanding)
What about R7RS?
Is it usable?
What’s ahead of us?

Section 2

RNRS

General

Started out as Report and Revised Report on the algorithmic
language Scheme
Revised Revised Report on the algorithmic language Scheme
-> R2RS
Community-driven standard
Unanimous vote required to pass new revision

R5RS (1998)

The baseline
50 pages
Notable features: Numeric tower, continuations, multiple
values, TCO, hygienic macros
Not quite enough, implementations typically provide extensions
(such as a module system, records, string ports, etc.)
Most widely implemented standard

R6RS (2007)

The controversial one
Broke with unanimous vote
190 pages in total (standard, libraries, rationale, appendix)
Adds libraries, bytevectors, UTF-8/16/32 support, two kinds of
records, exceptions (with condition hierarchy), a second ports
API, bitwise arithmetic, syntax-case, hash tables, enums,
etc.

R7RS (2013-?)

Aims to fix R6RS
Almost compatible to R6RS (library definitions, #!r6rs,
errata)
R7RS-small: Like R5RS, removes the controversial R6RS parts
R7RS-large: Provides a big standard library in form of SRFIs
https://github.com/ecraven/r7rs-benchmarks

https://github.com/ecraven/r7rs-coverage

https://github.com/ecraven/r7rs-benchmarks
https://github.com/ecraven/r7rs-coverage

R7RS-small (2013)

90 pages, minimalist
Adds records, libraries, cond-expand, exceptions, bytevectors,
string/bytevector ports, parameters, timing, etc.
Many small fixes, some complications (number literal
incompatibility, #true / #false literals)
Considerable number of implementations exist by now

R7RS-large (ongoing)

Organized by rainbow-colored dockets
Might surpass CL standard in size (and time to completion)
Red: Data structures (done)
Orange: Numbers (TBD)
Yellow: Syntax (TBD)
Green: Non-portable (TBD)
Blue: Further extensions (TBD)
Indigo: Extensions of doubtful merit (TBD)

Section 3

Evaluation with MAL

What is MAL?

Make A Lisp
Guide for making a Lisp interpreter
Clojure-like, minimalistic, bootstrappable language
Implemented in 70+ languages
TDD approach with > 600 unit tests

Why MAL?

Non-trivial, yet tractable exercise
Implementing this should uncover plenty bugs
R7RS-small covers just enough to make it possible
I know it reasonably well (handed in four implementations so
far)

Candidates

Chibi Kawa CHICKEN Gauche Picrin
Sagitarrius Cyclone Foment Guile Racket
Larceny Mickey Husk Gerbil Rapid

Rejects

Guile (no R7RS mode or library support)
Larceny (whacky tooling)
Racket (inofficial support, issues with library loading)
Mickey (completely broken)
Picrin (no library loading support)
Husk (superseded by Cyclone)
Rapid (requires a R7RS implementation)
Gerbil (R7RS support is WIP)

Chibi

The recommended one for full compliance
Comprehensive test suite (reused by others)
No issues encountered
Comes with a few dozen extensions
Used for R7RS scripts, recommended for embedding
Somewhat slow

Kawa

Not really a GNU thing (as opposed to Guile)
JVM language, good interop (only beaten by Clojure’s syntax)
Yet: Fast compiler, small boot time, decent speed, no issues
Contains other language implementations, JEmacs
Works for Android, Applets, . . .
Why isn’t it more popular?

Gauche

Aims to be a practical Scheme distribution
Bundled with many extensions, aimed at scripting
No issues, good speed for an interpreter
Been around for a long time
I might have used this haven’t I met. . .

CHICKEN

My personal choice for writing CLI utils and small web apps
Best in terms of speed from all candidates
R7RS support implemented by an egg
Rather tricky to use locally installed libraries, otherwise no
issues
Looking forward to CHICKEN 5 fixing this

Sagittarius

A fork of Gauche
Higher development activity, extra libraries, different build
system
Otherwise very similar to it

Cyclone

Relatively new implementation with similar design choices as
CHICKEN

Cheney on the MTA (with native thread support)
Generational GC (runs concurrently to threads)
Written purely in Scheme
Compiles to C

Actively developed
I’ve uncovered seven bugs so far and handed in one PR
Not quite as fast as CHICKEN yet

Foment

Someone’s personal learning project
As fast as Chibi
I’ve reported five bugs and handed in one PR

Section 4

Outro

Summary

Implementing MAL was successful
I’ve found a new Scheme to play with (Kawa)
Greatest difficulty: Loading libraries
R7RS-small covers enough for writing useful programs/libraries
R7RS-large is not completely bonkers

Further work to be done

Further implementations:
Larceny
Gerbil
. . .

Testing Snow2
Porting something more advanced (GRASS?)

Questions?

	Intro
	RNRS
	Evaluation with MAL
	Outro

